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A. Set-Based Methodology for White Noise Modeling 

Fernando Paganini 
Electrical Engineering. MIS 116-81 
California Ins t i tu te  of Technology 

Pasadena,  CA 91125 
Email: fernando@hot.caltech.edu 

Abstract 

This paper provides a new framework for analyzing white noise disturbances in linear sys- 

tems: rather than the usual stochastic approach, noise signals are described as elements in sets 

and their effect is analyzed from a worst-case perspective. 

The  paper studies how these sets must be chosen in order to  have adequate properties for 

system response in the worst-case, statistics consistent with the stochastic point of view, and 

simple descriptions tha t  allow for tractable worst-case analysis. The methodology is demon- 

strated by considering i ts  implications in two problems: rejection of white noise signals in the 

presence of system uncertainty, and worst-case system identification. 

A general feature of mathematical models in engineering science is the presence of modeling errors, 

which arise due to  poorly understood or highly unpredictable phenomena, or from simplifications 

deliberately introduced for the sake of model tractability. Essentially two approaches are available 

t o  assess the consequences of this error: one is to  model the uncertainty in terms of a set of allowable 

perturbations and perform worst-case analysis over this set; the other is to  assign the additional 

structure of a probability measure to  the error, and perform analysis in the average. 

Vncertainty is often the dominant issue in models used for control system design. These models 

involve substantial approximations (linearizations. unmodeled dynamics) and uncertain parameter 



values, all of which lead to  systematic modeling errors for which the only natural characterization is 

based on sets. Also, the issue of stability provides an incentive to  take the worst-case point of view. 

This has been the strategy of robust control theory, which has developed mathematical tools for the 

evaluation of stability and performance in the worst case over sets of systems. In this theory, the 

methodology based on sets is also applied to  disturbance signals (another source of uncertainty), 

by modeling them in terms of a ball in some signal space (e.g. C2, Cm),  which motivates the Em or 

C1 criteria for worst-case disturbance rejection. The main motivation for these disturbance models 

is mathematical convenience, since these performance measures can be directly combined with set 

descriptions of system uncertainty to analyze robust performance (see, e.g. [15]). 

This approach for disturbance modeling is pessimistic, however, since it ignores a substantial 

amount of information about empirical disturbances. It is often the case that  these exhibit broad- 

band spectral characteristics (white noise, or some filtered version), especially when they describe 

the cumulative macroscopic effect of very high dimensional fluctuations a t  the microscopic level. 

The statistics of these phenomena have been very accurately modeled by the theory of stochastic 

processes. The systematic study of the properties of dynamical systems under stochastic noise, 

pursued by stochastic control theory, often leads to  tractable results, the most notable being the 

classical 'H2 (LQG) problem. The main limitation to  its applicability is that  noise is rarely the 

prevailing source of uncertainty, and the others do not fit easily into a stochastic description (1201 

contains some work in this direction). 

The robust performance question one would really want to address in many practical cases is the 

effect of white noise over sets of systems (the "Robust E2" problem). Many authors (see 125, 71 and 

references therein) have addressed this problem in terms of a direct combination of the worst-case 

and stochastic frameworks, and have succeeded in obtaining upper bounds for system performance. 

At this time. however. this approach is not developed to  a competitive level with other performance 

measures in robust control. In particular, it is difficult to  assess the conservatism of these bounds 

since they involve a combination of worst-case and average case analysis. 

Another example of the difficulty of combining these frameworks is the relation between robust 



control and mainstream system identification (as in [ I l l ) ,  since the latter relies in the stochastic 

paradigm for noise. Recent efforts in pursuing this unification in the worst-case setting have once 

again used a pessimistic view of disturbances, resulting in worst-case identification problems with 

weak consistency properties ([9, 261) and high computational complexity ([6, 211). 

In this paper we propose a new methodology for white noise modeling, aimed a t  resolving these 
- - 

difficulties. l h e  starting p o ~ n t  is the following question: how does one decide whether a signal 

can be accurately modeled as a stochastic white noise trajectory? Deciding this from experimental 

data  leads to  a statistical hypothesis test on a finite length signal. In other words, one will accept a 

signal as white noise if it belongs to  a certain set. The main idea of our formulation is to  take this 

set as the definition of white noise, and carry out the subsequent analysis in a worst-case setting. 

For this methodology to  be successful, these sets should: 

e Exclude non-white signals (e.g. sinusoids) which are responsible for the conservatism of the 

3-1, and L1 performance measures. 

a Include likely instances of white noise. Here stochastic noise will be used as a guidance for 

the choice of a typical set, but not for average case analysis. 

a Have simple enough descriptions to  allow for tractable worst-case analysis. 

The paper is organized as follows: some notation is established in Section 2. In Section 3, the 

case of signals over a finite horizon is considered, and set descriptions of white noise are given 

both from the time and the frequency domain points of view. These sets are analyzed in terms of 

the ~vorst-case system response and in relation to  stochastic noise. Section 4 contains the infinite 

horizon version. In Section 5, the application of this framework both to  Robust 7 i 2  analysis and to 

worst-case system identification is outlined. Space limitations preclude an extensive development 

of these directions; the objective here is to  show the potential of this methodology. The conclusions 

are given in Section 6. and some proofs are covered in the Appendix. 



2 Assumptions and Notation 

We will consider discrete time, causal, linear time invariant (LTI) stable systems of the form 

H ( X )  = CEO h(t)Xt, where X is the shift operator. Most of the results will be presented for single 

input/single output (SISO) systems; for the multivariable case see Section 4.3. In the SISO case 

we will assume that  h(t) E 11; this implies that the summation 

converges for each r ,  defining the autocorrelation sequence of H ,  and furthermore that  r h ( r )  is itself 

an El sequence, i.e. Cy=-, Irh(r)l < w. The frequency response (Fourier transform of h(t) E 11) is 

denoted by f l (e ju) ,  and is a continuous function of w .  The Fourier transform of r h ( r )  is the power 

spectrum sh(;) := 1 H ( ~ J ~ ) / ~ .  Also, the X2  norm of the system is given by 

For some of the frequency domain bounds obtained in this paper, we will further assume that  sh(w) 

is a function of bounded variation (in BV[O, 2 ~ 1 ) .  This means (see [22]) tha t  

where the supremum is over partitions P = {wl,. . . , w,) of the interval [O, 2n]. TV(sh) is the total 

variation of s h .  The time domain condition C / T  rh ( r ) l  < w is sufficient for sh(w)  E BV[O, 2 ~ 1 .  

3 The Finite Horizon Case 

A reasonable starting point for white noise modeling is the case of a scalar valued. finite horizon, 

discrete time sequence ~ ( 0 ) :  . . . , x ( N  - 1) of length N .  The infinite horizon version will be considered 

in Section 4. which also covers the extension t o  vector-valued signals. 

To analyze the response of a system with memory over this finite horizon, some convention must 

be made on the "past" values of the input signals. The two simplest choices are either to  assume 



the system is initially at  rest, or that  i t  is in periodic steady state of period N .  We will adopt the 

l , + + , ,  
L a L  bcl, since it leads to  a more tractable spectral thecry: the sequence x(O), . . . , x ( N  - 1)  will be 

identified with the periodic signal x(t) of period N .  This procedure is justified for analyzing stable 

systems with time constants which are small compared to  N ,  so that  the system is not sensitive t o  

long range correlations in the input signals; this will be a standing assumption in this section. 

The discrete Fourier transform (DFT) X(k) ,  k = 0 . .  . N  - 1 of the sequence x(t) is defined by 

the relations n7-1 "-1 
' 2 ~  kt 

X(k)  = x( t )e - JF  ; r ( t )  = - x ( k ) e j S k t  
t=O 

N 
k=O 

The (circular) autocorrelation sequence of x (correlogram) is given by 

and the sequence power spectrum (periodogram) by sx(k) = jX(k)I2, k = 0 . .  . N  - 1 

The sequences r,(r) and s,(k) form a DFT pair. For an N-periodic signal z(t) ,  we will use as 
2 norm the energy over the period, / I x  = rx(0) = c:=:' sx(k). 

The following relations follow immediately from the definitions. 

Lemma P Let H be a SISO stable system (h(t) E ll). If u(t) is an  17--periodic input signal to H, 

and y = f lu is the corresponding steady state (periodic) output, then 

3.1 White Noise Descriptions in the Time Domain 

S;le wish to  characterize white signals among sequences of length N: when faced with the problem 

of deciding whether an empirical signal is a sample of white noise, a statistician will perform a 

hypothesis test in terms of some statistic. A common choice (see [2, 111) is the sample correlogram. 

which should approximate the expected correlation for white noise (a  delta function). In other 



words a scalar signal is x ( t )  categorized as white if r X ( r ) / r x ( 0 )  is small for T in a certain range 

(e.g. 1 < T < T). For example1, one can choose t o  specify that  the correlogram (normalized to  

r x ( 0 )  = I), must fall inside a band around zero, of width y ,  as depicted in Figure 1. 

Figure 1: Correlogram of a pseudorandom sequence 

From the classical statistical peint of view, the choice of y is associated t o  a level of significance 

of the test, which in turn depends on some stochastic model. But regardless of the reasoning behind 

this choice, ultimately the "whiteness" of the signal is decided in terms of whether it belongs or 

not to a parametrized set. This motivates the following: 

Definition P The  set of signals of length iV which are white in the t ime  domain sense (accuracy 

7 ,  up to lag T )  is defined b y  

V V ~ V , ~ . T  := {x E Rn : Ir,(r)l 5 yr,(O), T = 1 , .  . . ,TI  (8) 

The response of an LTI system t o  signals in such sets will now be analyzed from a worst-case 

perspective. The worst gain of the system under signals in W*v,,,~ (a seminorm on systems) will 

be denoted 
s 

(9) 

'A common alternative is to  bound the sum of the squares of a fixed number of correlogram values; in our context, 

i t  is preferable to  bound the maximum deviation. 



Theorem 2 Suppose the conditions of Lenzma 1 hold, and u E M M ~ , ~ ~ , ~ , T .  Then  

Furthermore, ,,. 

and for H FIR of length T ,  

Proof: Equation (10) follows immediately from Lemma 1, and the definition of M I ~ ~ T , ~ , ~ .  Ap- 

plying (10) at r = 0 gives (11). The upper bound in (12) follows from ( l l ) ,  the lower bound from 

the fact that  the delta function is always a signal in the set W A V , , , ~ .  

Remarks: 

1. From inequality (10) we conclude that  the autocorrelations of y (up to  a constant factor ( l ~ l / ~ )  
lie in a band centered a t  the autocorrelations of the filter. Therefore, such a band is a natural 

set description for colored noise: the output of a linear fiiter under white noise. 

2. It can be shown (see [16]) that  if y < $, then for large enough the upper bound in (12) 

is achieved. This is no longer true for large values of y; for example, if y = 1, there are no 

restrictions on the input signal, and the induced norm can be bounded by the X, norm of 

the system which in the FIR case is equal to  

and is in general strictly less than the bound (12). The role of y in this worst-case approach 

is to  parametrize the freedom allowed in the disturbance signal, and results in a worst-case 

gain which varies from the Xz norm for y = 0 to  the 7-1, norm for y = 1 



Although the choice 7 = 0 would give a clean worst-case theory of white noise rejection, 

it would mean trading the pessimistic disturbance modeling of Em for an overly optimistic 

alternative. since a realistic finite horizon signal will not have exactly zero autocorrelations. 

3. In the general case, the parameter T also plays a role, and its adequacy depends on the time 

constants of the system, as foilows from ( i i j .  Tile case T = N - 1 is coilsidered below. 

There is no absolute answer as to  what is a "realistic" white noise signal, but the strongest 

motivation for these disturbances comes form high dimensional fluctuations (e.g. particle agitation). 

These have been classically modeled as stochastic processes, but could also be interpreted in the 

context of deterministic chaos (see [23]). In any event, stochastic noise is known t o  provide a good 

model. regardless of whether the probability measure is due to  chance or is the ergodic measure of 

a chaotic system. Therefore, a natural requirement for a realistic white noise set IVN,,,T is that  it 

should have large probability for stochastic white signals. In the statistical language, this refers to  

the level of significance of the hypothesis test for white noise. We will analyze this asymptotically, 

when the length of N of the data  record goes to  infinity and y.  T are functions of i'V. 

Theorem 3 For each ,V let x ,  = (x(0), . . . , x ( N  - 1)) be a vector of independent, identically 

distributed random variables, with zero mean and finite variance, and y ,  > 0. 

N+m A1+m 1. If T is  fixed, and 7 ,  f l  - m, then 77 (2, E IVh-,,,T) --+ 1. 

1. If the x(t)  are bounded, and 7, 4% AT+m N+m 
-+ CG, then 77 (x, E M7x,,,~-1) -? 1. 

N+m 3. If the x ( t )  are Gaussian, and y, N+m - m, then P ( x ,  E lViv ,? ,~- l )  - 1. 
1 ,,(A-) 4 

Remarks: 

Part  1 of Theorem 3 follows easily from well known results on asymptotic normality of the 

correlogram: there is substantial averaging between the length N of the time series and the 

statistic of length T which is employed. 



r Parts  2 and 3. with T set to  n' - 1, are deeper since there is no averaging: we are imposing 

constraints of essentially the same dimension as the sample length. These statements are 

apparently not found in the statistical literature; a proof is given in the Appendix. 

The previous theorem has provided a very tight "typical set" for stochastic white noise: we 

argue that  for many purposes, we can now ignore the probability measure and perform worst- 
N - + w  

case analysis over this set. One such case is disturbance rejection: by choosing y, -+ 0 a t  

a sufficiently slow rate. we find that  the set Wn-,.r,A,~-l has asymptotically probability 1 and also 
N+oo 

~ ~ H ! ~ ~ T ~ ~ ~ -  7, :q- l  
--+ IIHii2. We have therefore reinterpreted the 'Hz norm (asymptotically) as the 

worst-case gain over a typical set, rather than the average gain. Another situation where the 

probabilistic assumption can be replaced by a typical set is in the context of system identification, 

as will be discussed in Section 5.2. 

Finally. we remark that  this approach to  modeling based on sets can be applied regardless of 

any stochastic assumptions on the noise source: what matters is the statistical information (which 

may be obtained directly from empirical correlograms), not the generating mechanism. 

The main pending question at  this point is whether the chosen sets lend themselves t o  tractable 

worst-case analysis. This will be discussed in Section 5. 

3,2 Frequency Domain Descriptions 

As the name implies, a white signal has flat distribution of energy across frequency. which in the 

finite horizon case would correspond to  a flat periodogram (the DFT of a delta-function correlo- 

gram). The "raw" periodogram is typically very erratic, however, as demonstrated in Figure 2. 

This fact has long been recognized (see. e.g. 12, 51) in the statistical spectral analysis literature; 

correspondingly, the standard methods for power spectrum estimation are based on smoothing the 

periodogram. by some form of local averaging that  reduces the fluctuations (the variance). This 

smoothing is most commonly done by convolution of the periodogram with a window function; an 

abundant literature (see 181) has studied shapes and properties of these windows. 



Figure 2: Periodogram of a pseudorandom sequence 

In this paper ure are interested in defining a set of typical periodograms, which is a hypothesis 

testing problem. Of course, the image of IVAi,,,~ under the DFT is such a set, but it does not have 

a simple description in terms of the frequency domain coordinates: the whole purpose of using the 

frequency domain would be defeated with that  description. We will therefore pursue a different 

characterization for the frequency domain which relies entirely on periodogram properties. One 

alternative is to  specify that a "windowed" version of the periodogram be flat (this was pursued in 

[16]) but it is preferable to  have a test which does not depend on a choice of window. 

A very convenient alternative is provided by the Bartlett cumulative periodogram test (see [2, 

8]), which consists of accumulating the periodogram and comparing the result to  a linear function. 

Figure 3 contains the result of the accumulation process on the periodogram of Figure 2. As we 

see, the fluctuations have been smoothed by this integration and the result approximates a linear 

function in a uniform sense; this is the essence of definition which follows. 

Definition 2 The set of white signals in the frequency domain sense, with accuracy 7 is defined 

MTe will now support the frequency domain definition by exhibiting properties which parallel 



Figure 3: Cumulative periodogram and bounds for wN,, 

those in the time domain. The worst-case induced norm of a system N under signals in the set 

f17~~,, will be denoted 1 1  H l l ~ N , v .  

Theorem 4 Consider a stable LTI system H, with sh(iu') E BV[O, 2 ~ 1 .  Then  

Proof: 

Fix u E I^T7A7,,. 1 1  uli2 = 1. Define T(k) by T(0) = 0, r (m)  := & zT=-t s,(k), 1 < rn 5 N. So te  

that  T ( S )  = 1. Let y = Hu, and for simplicity denote sh(k) in place of sh(%).  We have 

Similar calculations show that  

From (15). (16) we obtain (note that  u E 1eN,, implies IT(k) - $ 1  5 1) ) 



Also, by bounding the difference between the integral ~ I H  1 ;  = J:" sh(2l l )2  and a step function 

approximation, it follows that  

In reference t o  the properties of the set WA-,, in the case of stochastic noise, these have been 

studied in the statistical literature. We state the following result (see the Appendix): 

Theorem 5 Let x(0), . . . , x(ilT- I ) ,  . . . be independent, identically distributed, zero mean  Gaussian 
lv-00 random variables. If 7 ,  rn - co, then P ( ( r (0) ; .  . ., r ( N  - 1)) E ql,,) 1V+m - 1. 

These asymptotic properties show that  the frequency domain definition is adequate from the 
N+m N+m point of view of the objectives of this paper: provided 7,  --+ 0, q N f l  -i cc the worst case 

disturbance rejection measure approaches the Rz-norm of the system, while the class of signals 

contains asymptotically all typical instances of stochastic white noise. Thus the families of time 

and frequency domain sets have asymptotically the same properties, although they are different for 

any fixed iY. 

4 The Infinite Horizon Case 

The role of infinite horizon signals in mathematical modeling is that  of an abstraction t o  capture 

the behavior of signals and systems over a long, but unspecified horizon; the chosen mathematical 

framework must extend naturally the finite horizon properties and lead to  tractable analysis. 

Two frameworks arise naturally for the study of deterministic spectral analysis: Hounded power 

signals and bounded energy (lz) signals. 



4.1 Bounded Power Signals 

There is a long historical tradition in a non-stochastic theory of white noise, going as far back 

as Wiener (see [28]), who considered ergodicity properties to  build a spectral theory of stationary 

signals devoid of probability. For disturbance rejection problems, this approach was followed in 

Zhou et .  al. [30], who considered the class of bounded power signals, defined by 

1 
N 

B = { ( t  : ( T )  = lim - x(t -+ ~ ) x ( t )  exists for each r 
N-rn 2N $ 1  

t=-N 

This class is well motivated since it includes with probability one trajectories of a strictly stationary 

ergodic random process. -41~0, similar properties are obtained in the context of deterministic chaos. 

The function r,(r) is the autocorrelation of the signal, and the power lxllp = (rx(0))+ plays 

the role of a seniinorm (with some restrictions, see below). Also, Bochner's theorem (see [4]) shows 

tha t  there exists a spectral distribution function S,(w), w E [O,2n] such that  r,(r) is recovered from 

the Stieitjes integral 

Equivalently. there exists a positive spectral measure which is the Fourier transform of r X ( r ) ;  this 

allows for periodic effects, which correspond to  atoms of this measure. It also includes the case of 

an  absolutely continuous spectrum, with the corresponding spectral density s,(u) = dS,(w)/d~.  

We now proceed to  give set descriptions of white noise signals in BP, motivated by the finite 

horizon definitions. In the time domain, define 

In the  frequency domain, Definition 2 extends by comparing the cumulative spectrum S,(w) with 

a linear function: 

ti:, = {x E BP : /s,(u) - IZ//:U/ 5 q / x / / ;  QU E [0,2r]} (22) 

One can also consider the ideal white noise set I?T701, = T@O of signals with autocorrelation equal 



t o  a delta function, flat spectral density. In fact, this class contains with probability one trajectories 

of stochastic white noise (see the Appendix): 

Proposition 6 Let x = (x(O), . . . , x(t), . . .) be a sequence of independent, identically distributed 

random variables, with zero mean and finite variance. Then P (x E Wo,,) = 1. 

We now turn t o  the properties of a stable system with input in BP. To ensure that  the output 

is a BP signal poses some rather technical issues which we will not address here (the 12 setting 

considered later on is more convenient for this). For the moment let us assume, following [3012 that  

both input and output are in BP, and satisfy the basic relations 

(ii) dS,(d) = l ~ ( e . ~ " ) / ~ d ~ , ( w )  (24) 

The worst-case gain in power for signals in the classes IT/?.T (or is defined by 

It follows immediately from (23) that 

For the frequency domain case assume sh E BV[O.~T] .  Consider u E I k q .  llullp = 1: an integration 

by parts yields 

Similarly, 1 1  H 11; = ~ ~ ( 0 )  - & g" wdsh(w) from where 

2 [ 3 ~ ]  states that  if u E BP, u E I,, and the system is exponentially stable, the output is in BP and (23-24) hold 

14 



and therefore 

In particular, the system R2 norm can be motivated as the gain in power under signals in 

TVO,~  = Mio. or equivalently by the limit norms 

lim IIH/ls,T ; lim lllYll*q 
4-0 n i O  

It is useful to  compare this approach with the one used in [30]. The induced gain in power is 

used there to  motivate the system norm; in contrast, the R2 norm is presented as a "mixed- 

induced" norm using different seminorms in input and output spaces (power in the output space, 

and a spectral seminorm in the input, based on the peak spectral density). 

In this paper we use power-to-power for both cases: for the 'F12 norm, instead of changing 

the input serninorm, we coxstrain the inputs to  belong to  the class of white signals. This seems 

more direct (worst-case gain over the class of disturbances one expects to  see), and allows for a 

comparison of the R2 and X, system norms. The main advantage of our formulation, however, 

will be made clear in Section 5, where whiteness constraints are incorporated in robustness analysis. 

4 .2  l2  Setting 

Although the class BP is conceptuallj an adequate non-stochastic framework for white noise signals, 

it is sometimes inconvenient due t o  its little mathematical structure. In particular, it is not a vector 

space (not being closed under addition, see [12]), so it is not a seminormed space. For this reason 

we will now consider white noise descriptions inside 1 2 .  which has the structure of a Hilbert space. 

At first, this seems unnatural, since white noise signals are typically considered t o  be stationary. 

so they will not decay as time goes to  infinity. As far as characterizing system response t o  signals 

with flat spectrum. however. the response to  l 2  signals is just as representative as the response to  

bounded power signals: the "behavior at  m" should not be the determining factor in any sensible 

engineering model. For example, the response of an LTI system to  a bounded power signal is 

approximately the same as the response to  a very long truncation. 



Actually, the same considerations apply to  standard 'Hm theory. While the ;Ft, norm is most 

naturally motivated [30] by the gain in power for bounded power inputs, since this class includes 

sinusoids, most technical results on 'H, are obtained by using 12 as a signal space. which does not 

contain these signals. but contains signals of arbitrarily narrow bandwidth. 

For l2 (square-integrable) sequences, the autocorrelation is defined by r,(r) = (x,  XTx). The cor- 

responding spectral measure is absolutely continuous, with spectral density s, = % = I x ( ~ J ~ ) I ~ ,  

where X(eJw) is the Fourier transform of x(t). 

The sets T.I/;J and over l2 can then be defined as in (21) and (22); the same properties hold 

for system gain. where the signal norm is now taken to be the l2 norm. 

4.3 Multivariable Extension 

This section outlines how the previous methodology can be extended t o  deal with vector valued 

white noise signals. We will only consider the case of infinite horizon l2 signals, which demonstrates 

all the necessary extensions; the same ideas could be applied in a finite horizon setting. 

For vector-valued signals x(t) E 12(Wn), the matrix autocorrelation (prime denotes transpose, * 
denotes conjugate transpose) is given by 

Once again, a spectral (ma.trix) distribution function S,(w) is defined, verifying a matrix version 

of (20). In this lz case = s,(w) = x(ejw)X*(ej"), where the column vector X(ejw)  is the 

Fourier transform of x(t).  The 2-norm of the sig~ial verifies 

Consider a stable, discrete time linear time invariant system with in general n inputs and p 

outputs, H(X) = CEO h(t)Xt, with frequency response H(e"). 

Defining RH(r)  = CEO h(t + .r)hl(t) and sH(w) = H(eJw)N*(e"), the 'Hz norm of H satisfies 

(32). If u ( t )  E Z2(Rn), y(t) E 12(WP) are respectively, the input and output to  N, then: 



Now sve give set descriptions of vector valued white noise. For a matrix A denote /lAllco = 

max;.j lil;,jj. and define the following set in terms of time domain constraints 

In (35) we impose low autocorrelation for 1 5 r 2 T ,  and also low "spatial" correlation between 

the components of the vector signal. The choice of the mat,rix norm in (35) is somewhat arbitrary; 

the previous choice has the advantage of imposing quadratic signal constraints (see Section 5). 

For a frequency domain characterization, define 

Defining llH/lil-. , l/Hl/iiT as usual. bounds similar to  (26), (29) can be obtained from (33). 
7 , T  

(34), leading to  

1 
lim H = lim llHiT = - IIHII,; 
7-0 J+';,T , i O  

T - ~  6 
Remarks: 

e The factor f arises from the use of the same norm in input and output space. It can be 
J;i 

also motivated for stochastic noise: if the input has covariance matrix 1, the expected input 

power is 6, and the expected output power is /lHl12. 

o In 1; space there are no ideally white signals (R,(r) = S(r) I ,  or S,(w) = wl), since this 

would imply s,(w) = I ,  and it is a rank one matrix for each w. "Pure" white multivariable 

noise appears only in the bounded power approach. For y > 0. 7) > 0, hourever, the 1; sets 

VC',,, and TV, are non-trivial, giving arbitrary approximations to  white noise which can be 

used via (37) to  motivate the X2 norm within the Z2 framework. 



5 Worst-Case Analysis over W h i t e  Noise Sets 

The previous sections have provided set descriptions of white noise signals aimed a t  worst-case 

analysis. and have shown that  this procedure is sound and gives results which are consistent with 

the alternative stochastic setting. 

MTe will now show that  this approach leads t o  tractable worst-case analysis by showing ap- 

plications of this framework to  two different problems mentioned in the introduction: robust R2 

performance analysis and worst-case system identification. We will not attempt to  present a full 

description of these directions in the limited space available here; they have been developed else- 

where [18, 17, 19, 271, and journal versions are in preparation. In this paper our objective is to  

provide enough evidence that  this methodology has useful implications. 

5.1 Robust X 2  Analysis 

A problem which has received substantial attention (e.g. [25 ,  71) is that  of obtaining robust per- 

formance guarantees for a set of systems subject to  white noise disturbances. 

Figure 4: Uncertain system 

In the system of Figure 4, G is a known (nominal) map which is assumed to  be an LTI system. 

The perturbation A represents the system uncertainty, which is assumed to  have block diagonal 

structure, of the form A = diag [Al , .  . ., AF], (each A, is of size q,) and is normalized t o  a set 

BLb := (A : JiAll 5 1). For background and motivation for this setup, see [ ls ] .  



T h e  objective is to  analyze rejection properties of the system t o  a white noise disturbance 

applied in u, in the worsx-case over A E Ba. If the perturbation A is assumed to  be LTI, this 

corresponds to  finding the worst-case 312 norm of the closed loop transfer function from u to  y ;  we 

will mostly deal with linear time-varying (LTV) A's here, but still refer t o  robust 'H2 performance 

with some abuse of terminology. 

Set descriptions will be applied to  describe the white noise disturbance u;  as argued in Section 

4.2, i t  is sufficient to consider the sets VI',,T or ~.i/, inside l 2  space. The robust performance analysis 

problem (e.g., for Wr,~) is therefore to  compute 

Before addressing this problem we review how this question can be handled when there is no 

constraint on u. 

5.1.1 Background on Robust 31, Analysis 

The robust performance question most commonly treated in the literature deals with 'H, perfor- 

mance, which refers to  the worst-case gain of the system as an operator on 1 2 .  For the system 

in Figure 4. far the case where A is a structured, otherwise arhitra,ry linear operator on 1 2 ,  the 

following necessary and sufficient condition for has been obtained [24, 141: 

sup I ly l l2 < 1 3X E X : G(eJW)" 
AEBA 

(39) 

11u112<1 

In (39): X is the set of positive scaling matrices of the form X = diag[x l Iq , ,  . . . , xFIq,].  Since X is 

convex and so is the condition (39), this test has tractable computational properties (see [3, 151). 

We now briefly explain how this result can be obtained from the Integral Quadratic Constraint 

(IQC) formulation: which originated in the work of Yakubovich [29], and has recently been applied 

to  this 'H, problem by Megretski [14]. 



Let z be the vector of all the inputs to system G,  s = (21,. . . , z ~ ,  z ~ + l ) ,  where ( z l , .  . . , z ~ )  is 

the partition of the signal v in terms of the blocks of A ,  and Z F + ~  = u. Analogousiy (Gz);, i = 

1 , .  . . , F + 1 denote the partitions of the output of G. 

Now define the following scalar valued quadratic functions of z  E 1 2 ,  

The main observation is that  if the a,(z), i = 1,. . . ,F + 1 are all non-negative for a certain 

z # 0, then G expands this signal in every channel, and therefore contractive LTV perturbations 

A,. . . . , nF exist such that  the closed loop is expansive at  z ,  violating robust 32, performance. 

Robust performance is thus converted t o  a condition on the sign on a finite number 61, .  . . , U F + ~  

of quadratic forms on 12. (39) now follows from the application of the following result by Megretski 

and Treil [14]: Given 01,. . . , a ~ + 1 ,  where each a, : Za+R is a shift invariant quadratic form in 12, 

the following are equivalent: 

1. There does not exist z E l 2  such that  a; > 0 i = 1 , .  . . , F + 1. 

2. There exist x, 2 0: i = 1, . . . , F + 1, not all zero such that  x l a l  + . . . + X F + ~ ~ F + I  5 0 

Note that  the only non-trivial direction is 1+2; this is called "S-procedure losslessness". Applied 

to  (40),  condition 2 then leads to  (39), with X = diag[xlI , .  . . , X ~ I ] / X ~ + ~ .  Some refinements of 

these arguments are needed (see 1141) to  obtain strict inequalities, and x; > 0. 

5.1.2 Robust Performance Analysis over the Signal Set H7T,T 

SVe now show the robust performance problem remains tractable when the disturbance u is con- 

strained to  vary in the white noise set WytT. We consider for simplicity the case of scalar noise, 

similar arguments apply to  the multivariable case. The main observation is that  W y , ~  is described 

by a finite number of constraints 



which are quadratic on the signal u. In other words, they are IQCs (this was already suggested in 

[13]) corresponding to  the quadratic forms a$(u) = ~ r , ( 0 )  + r,(r),  o;(u) = yr,(O) - r,(r).  

Using the same arguments as in the case of R,, robust performance analysis over T/V,,T reduces 

t o  the question of whether there exist signals z E l 2  verifying simultaneously 

W'e are therefore once again in a position to  apply the losslessness theorem cited above, which will 

imply the existence of non-negative scalings x;, x: satisfying 

The previous condition is once again convex in the scaling parameters x,, x:, which suggests 

that  computational methods similar to  those for robust R, performance analysis should result. 

These issues are further studied in [17, 181. where the theory is developed from a different (though 

equivalent) point of view. The idea in [17, 181 is that  IQCs can be represented in implicit form, in 

terms of uncertain equations. Representing the system also in implicit form reduces the problem 

to  a standard form of implicit analysis question which is studied in detail in 117, 183. In particular, 

state-space methods are mailable to  compute the convex condition (44). 

An important remark is that  the losslessness result of 1141 only applies t o  a finite number of 

IQCs, which requires T < co. As 7-0, T-im we will approach the robust R2 performance measure. 

but convergence in T could be slow, leading to  large computations. The situation is better for the 

frequency domain sets, as is shown next: 

5.13 Robust R2 Analysis in the Frequency Domain. 

Robustness analysis with white noise signals over the set i@v appears t o  be a more complicated 

problem since grv is not described by a finite number of scalar constraints: although the integrated 



spectrum S,(w) depends quadratically on u, and is shift invariant, it takes values on a function 

space, namely the space of continuous functions in [0, 2 ~ 1 .  The constraint 

izposed on S, in the definition of Wv is also infinite dimensional in nature. 

It is shown in [19], however, that  this approach leads to  a very compact solution t o  the robust 

7-12 analysis problem. Although i t  remains infinite dimensional. its form lends itself to  simple finite 

dimensional approximations. The following is the necessary and sufficient condition for Robust R2 

performance (i.e. robust performance over r/i7v for small enough 7) for the system of Figure 4: 

There exists X E X. X > 0, and a matrix function @(G) E C m x m ,  = a f ,  such that  

The previous condition is stated for the multivariable noise case ( n  is the dimension of the 

noise). W'e see that  (46) is very similar to  condition (39) for Robust 7-lm performance; the only 

additien is the incorporation of the function @(w) ,  which plays the role of an  infinite dimensional 

6'multiplier" corresponding to  the constraints defining I/~T~. Heuristically, for n = 1, @(w) allows 

for the gain to  be larger than 1 at  some frequency, provided that  it is compensated at  some other 

frequency by keeping the total effect 1 Q(w)du negative: this imposes in effect an average over 

frequency performance which corresponds to  the 'F12 norm. 

SVe note that  the computational properties of this test are also of a similar nature to  those 

of (39). Consequently, analyzing robust En performance is essentially no harder than analyzing 

robust X, performance; this is a strong result which is shows the benefits of modeling uncertainty 

and disturbances in a consistent framework. 

A proof of this result is given in [19], where various extensions are also considered, in particular 

to  the case of LTI uncertainty, involving frequency-dependent scaling matrices X. 



5.2 Worst-Case System Identification 

T h e  classical literature on system identification (see [11] and references therein) characterizes model 

errors as due to  stochastic noise; system identification in this setting is a special case of an estimation 

problem in statistical inference. From this perspective, the main requirement for an  identification 

scheIrle is ti1& if the true is in the model +L- b l L c  c U L l l l l Q C I G D  --+:--.+no a l G  -.... C.V,LOOUtLtYO, r.AmC.oo D m +  1.e. . they 

converge t o  the true values in a stochastic sense, as the length of the experiment goes t o  infinity. 

In contrast. robust control theory has relied on error models based on sets, e.g. a ball of systems 

in some norm. The desire to make identification and robust control more compatible has stimulated 

a research direction (see e.g. [9, 26, 6, 211) which treats the system identification problem from a 

worst-case point of view. and seeks "hard" bounds on the identification error. In this formulation 

noise plays the role of an adversary; if, as is standard in robust control, i t  is allowed to  vary over a 

large class (e.g. a ball in I,), then consistency of the estimates can no longer be ensured. 

M'e now discuss these issues in the simple situation of a SISB model structure 

where h = (h(O), . . . , h(T - 1)) is FIR. and d is noise. Given data for y. u of length A', the problem 

is t o  estimate the system h. The equations in (48) can also be written in matrix form as y = U h + d ,  

where y ,  h. d are column vectors and 24 denotes the N x T Toeplitz matrix with first column u. 

The 2-norm will be used for signals here; the input is normalized t o  1 1 ~ 1 1 :  = LT. TO simplify the 

analysis, assume that  the experiment was started at  time -(T - I),  with values of u which are 

A--periodic. 

In the classical theory. d is assumed t o  be stochastic white noise: IID random variables, with 

zero mean. variance 02. In this linear regression problem the minimum variance estimate for h is 

given by the least squares solution 

h = ( Z ~ * U ) - ~ U * ~  (49) 

where invertibility of U"1.l   persister:^^ of excitation) is assumed. The estimator (49) is unbiased, 



and its covariance matrix Q ~ ( u * u ) - ~  will converge to  zero as N-oo, under stationarity assumptions 

in u .  This implies that in the stochastic sense. the estimator will be consistent. 

For worst-case identification, we first follow the usual approach which is t o  only restrict d to  be 

bounded in norm; suppose l ldlli 5 S2n' (noise to  signal ratio 6). Since there is a linear relation (48) 

between h and d,  the set of h values compatible with the data  and the constraint lldll; 5 d 2 N  will 

be an ellipsoid. It follows that  if one wishes to  minimize the maximum error in the 2-norm in h ,  

the optimal choice is the center of the ellipsoid, which once again corresponds to  the least squares 

solution (49). Assuming now for simplicity that  u is purely white (i.e. U*U = N I ,  this is also the 

optimal choice) the worst-case estimation error 

has a value of 6, corresponding, for example, to  d = Su. 

We therefore find that  although both points of view lead in this case t o  the same optimal 

estimate, they attach to  it a different interpretation. In particular, consistency is lost in the worst- 

case setting: the estimation error cannot be made smaller than S, no matter how long the data 

record is. The same was found in [9, 261 for other system norms. The reason for this pessimistic 

interpretation is that  the noise, which plays an adversarial role, is allowed to  vary in a class where 

it can "conspire" to  have a high correlation with the input. This suggests that  the desirable 

consistency interpretation can be recovered if the disturbance is constrained in the style of this 

paper to  have low cross correlation with u. 

One way of doing this was studied recently by Venkatesh and Dahleh [27]: the input is cl~osen 

to  be periodic of period T (this allows for persistence of excitation of order T ) :  and the disturbance 

d is restricted t o  the set WN,,,N-13. The main observation from [27] is that  in this case (assuming 

N is a multiple of T) 
N-1 

"n [27]  a variation of this set is used; i t  leads nevertheless to similar bounds as those given here. 



where r d ( ~ )  is the correlogram of d (length N)  and rT(r)  is the correlogram for u of length T, 

repeated periodically, For a purely white u, we would have 

T T for T = k T ,  k =  0 ,  . . . ,$- 1 
T u  (7) = 

0 r # k T ,  l < r < N - 1  

Imposing that  d E W N , - ~ , N - ~ $  (SO), (51) and (52) give 

We now consider another way to  constrain the identification problem, which is to  directly impose 

low correlation between u and d. For example, we can impose that  (u,  d) is a white signal in the  

multivariable sense. More precisely, that  (Su, d) (scaling both components t o  the same size) is in  

the  set TV'T,r,T. This set is the finite horizon version of the set W,,T of (35) and in particular 

imposes the cross correlation constraints 

Since the elements of ZA*d are (XTu, d) ,  r = 0, . . . , T - 1, these bounds can be applied to  (90) giving 

* N+m In both cases ((93) and (55)) if ~ ~ ~ 4 0  as iY+m, we obtain the consistency property hN - h. 

By choosing an appropriate decay rate for y (e.g. y = $,a < i), the chosen disturbance set 

has high1 probability from the stochastic viewpoint (Theorem 3 applies to  the case d E M f N , , , e v - l ;  a 

similar argument can be used for the multivariable case, or applied t o  the constraints (54) alone). 

Therefore. our class of disturbances is still rich enough to  accommodate classical identification. 

In addition, the errors in (53) and (55) will decay to  zero in polynomial time (in contrast to  the 

complexity results of [6, 211). 

As those in 126, 6, 211, these results for FIR identification are mainly of conceptual value, and 

contribute to  understand the properties of the identification problem from a worst-case perspective. 



However they provide important practical guidelines as to  how a more general identification problem 

should be posed when worst-case guarantees are sought (e.g. identification involving noise and set 

descripiions of utzrnodeled dynamics). To avoid conservatism the disturbance must be constrained 

explicitly, and correlation constraints are an adequate tool for this. These more general problems 

are ci~rrently under investigation. 

As a field of engineering science, control theory has a broad interaction with mathematics, drawing 

on tools from various disciplines, such as dynamical systems, algebra, functional analysis and prob- 

ability. While these provide a variety of viewpoints which is an asset of this field. i t  is sometimes 

difficult to  combine the positive features of the different frameworks. In this paper we have suc- 

ceeded in addressing one such situation, providing a meeting point between the functional analytic 

and stochastic points of view. 

Of course, many problems will not yield to  this kind of unification. In particular, not all aspects 

of a stochastic description can be captured by worst-case analysis over a typical set. Nevertheless, 

we feel tha t  there is potential for further applications of this line of thinking in various engineering 

problems, which naturally call for a combination of "hard bounds" and probabilistic models. 

Appendix 

This section contains proofs and supplementary material for the stochastic results. 

Proof of Theorem 3: 

Part 1: For the case of a fixed time lag T ,  the distribution of the autocorrelation r , ( ~ )  has 

been extensively studied in the statistical literature [2, 11; exact expressions for the distribution of 

r,(r)/r,(O) when r ( t )  is Gaussian are obtained in [I], and it follows that  fl# is asymptotically 



normal Ar(0, 1). Since y I/% + GO, and T is fixed, 

In par ts  2. 3 of the theorem, the number of correlation constraints grows with the sample size, and 

the argument with the normal approximation cannot be used: even though each r,(r) for fixed 

T is asymptotically normal, the joint distribution of (r,(l), . . .r,(N - 1)) is defined on a space of 

increasing dimension, where no global averaging occurs. Our proof relies on a Hoeffding inequality 

for sums of bounded random variables, [lo]: 

Theorem 7 (Hoeffding) Let 20,. . . z ~ - ~  be independent random variables, of mean p and bounded 
1 N-1 by a 5 2, 5 b, define 2 = m 2, .  Then for E > 0, 

Me want to  apply this inequality to  the sum r,(.r) = c::, ~ ( t ) ,  with ~ ( t )  = z(t)x((t 4- ~ j m o d N ) ,  

and x ( 0 )  . . . x ( N -  1) independent. identicaliy distributed. The z ( t  ) are not independent (as required 

in Theorem 7), but their dependence is very slight, so the sum can be reduced to  three sums of 

independent variables. as shown in the following sequence of Lemmas. 

Lemma 8 Let {a l . .  . .,a,) be a permutation of (1 , .  . .,,$-I. Then the set of ordered pairs S = 

((1, a l  ), . . . . (X,  a , ) }  can be partitioned into three disjoint sets S1,  S2,  S3, of respective cardinality 

n l ,  n2, ns, such that 

1. LTo t ~ o  pairs which fall in a single S, have a common element of (1 , .  . . , X }  

(i.e., i f(n,a,) ,(m,a,)  E S,, n #  m, t h e n n # a ,  a n d m  # a,). 



Proof: '1Ve perform the classification by induction. For a given n ,  assume that  the pairs 

(1, al), . . . , (n ,  a,) have been classified in disjoint sets sin), sin), s?) which satisfy condition 1. 

Now consider a new pair ( n  + 1, an+l). Since there are a t  most two pairs in S with an element in 

common with (n + 1, an+l), at least one of the three 5':") will have none of these pairs and therefore 

cendition 1 is maintained if (n + 1, is added t o  it. This implies by induction that i t  is possible 

t o  partition S into sets S1, S2, S3 satisfying condition 1. 

Now consider their cardinalities n l ,  n2, n3. Assume that 2n; < n, for some i , j .  Since there are 

at most 2n, elements in the pairs of St. and Sj has more pairs, then a t  least one pair in S, shares 

no elements with those of S,. Therefore this pair can be moved to  S,, maintaining condition 1. 

Repeating this procedure will lead to  a partition S1, Sz. Sg satisfying condition 1 and 2n, 2 n, Vi, j .  

If n l  is, for example, the minimum of the n;, then N = nl  t n2 t n3 I nl  t 2 n l  + 2n1 = 5nl 

which implies condition 2 is satisfied. 

L e m m a  9 Let N 2 3, and x(0). x ( l ) ,  . . ., x(,V - 1) be independent identically distributed random 

variables. Fix 1 5 r < N .  Then r,(r) can be expressed as r,(r) = C1 t C2 $ C3, where each C, is 

the sum o j  n, independent, identically distributed random nnriables, and n, 2 9. 

Proof: For the permutation a l ,  . . . , a, given by the circular shift a, = (n  + .r)modiT, perform 

the classification into sets S1, S2,  S3 of Lemma 8. Then for each i choose 

By construction of the sets S;, the terms in the sum (58) are independent, identically distributed. 

Now we return to  the rest of Theorem 3. 

Part 2: Assume x(0), . . . , x ( N  - 1) are bounded random variables, Ix(t) 1 < Ii. Pick 1 5 T < 21'. 

From Lemma 9, r,(r) = C1 t Cq t C3, where each C, is the sum of n; independent. identically 



distributed random variables, with zero mean and bounded in [-K2,1C2]. Invoking Hoeffding's 

hT inequa!ity and n, 2 T, we have 

T h e  same argument can be employed to  bound P (-q > c), for each value of r .  This implies 
\ 

Now choose O < p  < 1. The complement of WN,r,N-l can be written as 

c I rx (~? l  ( max - 
W;n'N-l = l<r<N T,(O) 

max - 
t=O 

(61) 

T h e  probability of the first set is bounded by (60), setting E = yp.  The probability of the second 

set can be bounded by another use of the Hoeffding inequality, applied to  the bounded IID random 

variables ~ ( t ) ~ .  Putt ing everything together, 

The second term clearly goes to to  zero as A7+m, and the same happens with the first term since 

by hypothesis ?, 'Loo m. 

Part 3: Assume ~ ( 0 ) :  . . . , x ( N  - 1) are Gaussian random variables, x(t) N N ( 0 , l ) .  Choosing 

Ii(_X) = d m ,  define the random variables v(t), t = 0.. . . , N - 1 by truncation: 

v(t) = 
z( t )  if lx(t)l < I i ( N )  

0 otherwise 

In (64) x = (x(O), . . . , x(hT - I)) ,  v = ( ~ ( 0 ) ~ .  . ., v(N - I)) ,  and the second inequality follows from 

a standard bound to  the tail of the normal distribution (C is a constant). Observing that  



it remains to  show that  P ( v  $ T'i'N,r,N-l) also vanishes as N-+oo. Since the variables v(t) are 

bounded by I < ( N ) :  (62) gives 

The second term clearly has limit 0 as , V i m .  The first term also goes to  0, since by hypothesis 

A ~ - , ~ P ~  - p2 A''2 goes t o  infinity. 
K4Log(N) - 4 Log(N) 

Remarks on the Proof of Theorem 5 

The fact that  a uniform bound is being applied to  the cumulative periodogram means that  we are 

imposing a number of constraints of the order of the sample size. as in Theorem 3 parts 2, 3; this 

again precludes simple arguments based on averaging. 

The key observation, which led Bartlett (see [2]) to  propose this test. is to  notice that  the 

stochastic properties of the cumulative periodogram are similar to  those used for tests on empirical 

distribution functions. The maximum deviation between an empirical distribution and the true 

distribution function forms the basis of the ICo1mogoros~-Smirnov test (see [4]), which has well known 

asymptotic properties. The connection with the cumulative periodogram can be seen as follows: 

in the case of Gaussian white noise, the periodogram values are independent and exponentially 

distributed (see [5]). which implies ([4], Prop. 13.15) that  the normalized cumulative periodogram 

values S" = -L Cr=-i sx(k) have the same joint distribution as an ordered sample of uniform 
SAT A ~ / I Z ( / ~  

( 0 , l )  variables. From these arguments i t  follows that  

1 1v-00 converges in law to  a fixed distribution. Since - 
1 7 ~ f i  

- 0, then 

which proves the theorem. 



An additional remark is that  although this proof is valid for Gaussian noise, there is indication 

in [2] that  the asymptotic properties are insensitive t o  the noise distribution. 

Proof  of Proposition 6 

For a fixed r + 0, referring to  [4] (proposition 6.311, we find that  the random process z(t) = 

x(t)x(t  + r )  is ergodic, so with probability 1, 

1 
lim - C x(t + r )z( t )  = ~ [ x ( t  + ~ ) x ( t ) ]  = o 

N-00 21Y + 1 (671 
t=-AT 

Therefore Wo., has probability 1 (countable intersection of probability 1 sets). 
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